Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-Bis(4-methylpiperazine-1-carbodithioato- $\kappa^2 S, S'$)bis(pyridine- κN)cadmium

P. Valarmathi,^a S. Thirumaran,^a Kamini Kapoor,^b Vivek K. Gupta^b and Rajni Kant^b*

^aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and ^bX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India Correspondence e-mail: rkvk.paper11@gmail.com

Received 25 November 2011; accepted 20 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.026; wR factor = 0.057; data-to-parameter ratio = 15.8.

In the title complex, $[Cd(C_6H_{11}N_2S_2)_2(C_5H_5N)_2]$, the Cd^{II} ion is hexacoordinated by two N atoms from two pyridine ligands and by four S atoms from two dithiocarbamate ligands in a distorted octahedral geometry. The Cd^{II} ion lies on a twofold axis. The piperazine ring is in chair conformation and its leastsquares plane makes a dihedral angle of 81.4 (1)° with that of the pyridine ring.

Related literature

For background to and applications of dithiocarbamates, see: Bessergenev *et al.* (1997); Havel (1975); Valarmathi *et al.* (2011); Pickett & O'Brien (2001). For related structures, see: Ivanov *et al.* (2006); Onwudiwe & Ajibade (2010); Yin *et al.* (2004).

Experimental

Crystal data $[Cd(C_6H_{11}N_2S_2)_2(C_5H_5N)_2]$ $M_r = 621.18$

Acta Cryst. (2012). E68, m89

Monoclinic, C2/ca = 17.7065 (7) Å b = 8.7806 (6) Å c = 20.6171 (8) Å $\beta = 122.276 (5)^{\circ}$ $V = 2710.1 (2) \text{ Å}^{3}$ Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2010) $T_{min} = 0.645, T_{max} = 1.000$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.026 & 151 \text{ parameters} \\ wR(F^2) = 0.057 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.40 \text{ e } \text{\AA}^{-3} \\ 2383 \text{ reflections} & \Delta\rho_{\min} = -0.30 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2009) and *PARST* (Nardelli, 1995).

RK acknowledges the Department of Science & Technology for the diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2258).

References

- Bessergenev, V. G., Ivanova, E. N., Kovalevskaya, Y. A., Vasilieva, I. G., Varand, V. L., Zemskova, S. M., Larinov, S. V., Kolesov, B. A., Ayupov, B. M. & Logvinenko, V. A. (1997). *Thin Solid Films*, **32**, 1403–1410.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Havel, H. J. (1975). Semiconductors/Semimetals, Solar Cells, Vol. 11, New York: Academic Press.
- Ivanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). *Inorg. Chim. Acta*, **359**, 3855–3864.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Onwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431-1436.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Pickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467-479.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Valarmathi, P., Thirumaran, S., Ragi, P. & Ciattini, S. (2011). J. Coord. Chem. 64, 4157–4167.
- Yin, X., Zhang, W., Zhang, Q., Fan, J., Lai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 139–140.

Mo $K\alpha$ radiation $\mu = 1.14 \text{ mm}^{-1}$

 $0.3 \times 0.2 \times 0.2$ mm

24135 measured reflections

2383 independent reflections

2088 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.047$

supplementary materials

Acta Cryst. (2012). E68, m89 [doi:10.1107/S1600536811054791]

cis-Bis(4-methylpiperazine-1-carbodithioato- $\kappa^2 S, S'$)bis(pyridine- κN)cadmium

P. Valarmathi, S. Thirumaran, K. Kapoor, V. K. Gupta and R. Kant

Comment

The use of nitrogen donor adducts of cadmium dithiocarbamate complexes as convenient synthetic precursors for cadmium sulfide nanoparticles (Bessergenev *et al.*, 1997; Havel, 1975, Pickett & O'Brien 2001; Valarmathi *et al.*, 2011), attract continued attention to adducts of cadmium dithiocarbamates. As part of an on-going structural studies of nitrogen donor adducts of cadmium dithiocarbamates, the analysis of the title compound, (I), was undertaken. The bond angles around the cadmium atom are in the range of 67.56 (2) to 171.50 (3)°. The Cd—S bond lengths are: CD1—S1 = 2.6621 (7); CD1—S2 = to 2.6803 (7) Å and are in good agreement with those reported for other Cd- dithiocarbanato complexes (Ivanov *et al.*, 2006; Onwudiwe *et al.*, 2010; Yin *et al.*, 2004). The piperazine ring has a chair conformation. The asymmetry parameters are: $\Delta Cs(N2)=0.72$; $\Delta C2(N2-C3)=0.73$. The dihedral angle between the best least squares planes through piperazine and pyridine rings is 81.4 (1)°.

Experimental

Cd(4-mpzdtc)₂] (1 mmol, 0.483 g) was dissolved in 50 ml of warm pyridine. The yellow solution obtained was filtered and kept for evaporation. After few days, single crystals suitable for X-ray structural analysis were obtained (m.p. 552–554 K).

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ for methyl H atoms.

Figures

cis-Bis(4-methylpiperazine-1-carbodithioato- $\kappa^2 S$,S')bis(pyridine- κN)cadmium

F(000) = 1272

 $\theta = 3.5 - 29.1^{\circ}$

 $\mu = 1.14 \text{ mm}^{-1}$

T = 293 K

Block, white $0.3 \times 0.2 \times 0.2 \text{ mm}$

 $D_{\rm x} = 1.522 \ {\rm Mg \ m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 11642 reflections

Crystal data

 $[Cd(C_{6}H_{11}N_{2}S_{2})_{2}(C_{5}H_{5}N)_{2}]$ $M_{r} = 621.18$ Monoclinic, C2/c Hall symbol: -C 2yc a = 17.7065 (7) Å b = 8.7806 (6) Å c = 20.6171 (8) Å $\beta = 122.276$ (5)° V = 2710.1 (2) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer	2383 independent reflections
Radiation source: fine-focus sealed tube	2088 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.047$
Detector resolution: 16.1049 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$
ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010)	$k = -10 \rightarrow 10$
$T_{\min} = 0.645, \ T_{\max} = 1.000$	$l = -24 \rightarrow 24$
24135 measured reflections	

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0157P)^{2} + 4.0129P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.0000	0.14900 (3)	0.2500	0.04703 (10)
S1	0.08961 (5)	0.12653 (8)	0.17998 (4)	0.05259 (19)
S2	-0.07368 (5)	-0.05272 (9)	0.13462 (4)	0.0550 (2)
C1	0.01848 (16)	-0.0220 (3)	0.12909 (13)	0.0415 (6)
N2	0.03409 (14)	-0.1100 (3)	0.08483 (12)	0.0472 (5)
C3	-0.01499 (18)	-0.2496 (3)	0.04814 (16)	0.0552 (7)
H3A	-0.0316	-0.2518	-0.0049	0.066*
H3B	-0.0692	-0.2532	0.0490	0.066*
C4	0.04322 (18)	-0.3850 (3)	0.09059 (16)	0.0537 (7)
H4A	0.0569	-0.3849	0.1428	0.064*
H4B	0.0109	-0.4780	0.0660	0.064*
N5	0.12635 (14)	-0.3821 (3)	0.09173 (12)	0.0486 (5)
C6	0.17350 (18)	-0.2393 (3)	0.12557 (16)	0.0535 (7)
H6A	0.2272	-0.2361	0.1239	0.064*
H6B	0.1913	-0.2354	0.1789	0.064*
C7	0.11636 (19)	-0.1028 (3)	0.08401 (17)	0.0552 (7)
H7A	0.1487	-0.0101	0.1089	0.066*
H7B	0.1018	-0.1019	0.0315	0.066*
C8	0.1830 (2)	-0.5113 (4)	0.13378 (18)	0.0658 (8)
H8A	0.2363	-0.5078	0.1323	0.099*
H8B	0.1514	-0.6042	0.1107	0.099*
H8C	0.1988	-0.5070	0.1861	0.099*
N9	-0.09469 (14)	0.3546 (3)	0.16984 (11)	0.0476 (5)
C10	-0.13114 (18)	0.3577 (4)	0.09431 (15)	0.0561 (7)
H10	-0.1166	0.2808	0.0718	0.067*
C11	-0.1891 (2)	0.4693 (4)	0.04841 (17)	0.0701 (9)
H11	-0.2141	0.4665	-0.0043	0.084*
C12	-0.2098 (2)	0.5841 (4)	0.0804 (2)	0.0707 (9)
H12	-0.2492	0.6608	0.0501	0.085*
C13	-0.1715 (2)	0.5845 (4)	0.1582 (2)	0.0702 (9)
H13	-0.1833	0.6625	0.1821	0.084*
C14	-0.1153 (2)	0.4675 (4)	0.20016 (17)	0.0625 (8)
H14	-0.0902	0.4674	0.2529	0.075*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.05092 (17)	0.05401 (19)	0.03837 (15)	0.000	0.02532 (13)	0.000
S1	0.0537 (4)	0.0546 (4)	0.0574 (4)	-0.0160 (3)	0.0350 (4)	-0.0129 (3)
S2	0.0477 (4)	0.0652 (5)	0.0606 (4)	-0.0153 (3)	0.0346 (4)	-0.0175 (4)
C1	0.0434 (14)	0.0443 (15)	0.0351 (13)	0.0004 (12)	0.0198 (11)	0.0044 (11)
N2	0.0480 (12)	0.0535 (14)	0.0487 (12)	-0.0072 (10)	0.0317 (11)	-0.0095 (10)
C3	0.0494 (16)	0.066 (2)	0.0482 (16)	-0.0072 (14)	0.0247 (14)	-0.0184 (14)
C4	0.0593 (17)	0.0576 (18)	0.0497 (16)	-0.0190 (14)	0.0330 (14)	-0.0141 (13)
N5	0.0534 (13)	0.0503 (14)	0.0459 (12)	-0.0031 (11)	0.0291 (11)	-0.0021 (10)
C6	0.0502 (16)	0.0602 (18)	0.0599 (17)	-0.0077 (14)	0.0360 (14)	-0.0033 (15)
C7	0.0668 (18)	0.0536 (17)	0.0679 (19)	-0.0057 (14)	0.0511 (16)	-0.0017 (14)
C8	0.0697 (19)	0.060 (2)	0.0642 (19)	0.0003 (16)	0.0330 (16)	0.0036 (16)
N9	0.0469 (12)	0.0577 (14)	0.0362 (11)	0.0016 (11)	0.0208 (10)	-0.0025 (11)
C10	0.0576 (17)	0.072 (2)	0.0430 (15)	-0.0001 (16)	0.0295 (14)	-0.0007 (15)
C11	0.065 (2)	0.096 (3)	0.0455 (17)	0.0059 (19)	0.0269 (16)	0.0226 (18)
C12	0.0588 (19)	0.072 (2)	0.081 (2)	0.0091 (17)	0.0365 (18)	0.034 (2)
C13	0.078 (2)	0.0545 (19)	0.080 (2)	0.0082 (17)	0.0436 (19)	0.0018 (17)
C14	0.071 (2)	0.063 (2)	0.0449 (16)	0.0074 (16)	0.0251 (15)	-0.0054 (15)

Geometric parameters (Å, °)

Cd1—N9 ⁱ	2.417 (2)	C6—C7	1.506 (4)
Cd1—N9	2.417 (2)	С6—Н6А	0.9700
Cd1—S1 ⁱ	2.6621 (7)	С6—Н6В	0.9700
Cd1—S1	2.6621 (7)	С7—Н7А	0.9700
Cd1—S2	2.6803 (7)	С7—Н7В	0.9700
Cd1—S2 ⁱ	2.6803 (7)	C8—H8A	0.9600
S1—C1	1.725 (3)	C8—H8B	0.9600
S2—C1	1.717 (2)	C8—H8C	0.9600
C1—N2	1.333 (3)	N9—C14	1.323 (3)
N2—C3	1.459 (3)	N9—C10	1.330 (3)
N2—C7	1.467 (3)	C10-C11	1.368 (4)
C3—C4	1.510 (4)	С10—Н10	0.9300
С3—НЗА	0.9700	C11—C12	1.359 (5)
С3—Н3В	0.9700	C11—H11	0.9300
C4—N5	1.460 (3)	C12—C13	1.368 (4)
C4—H4A	0.9700	C12—H12	0.9300
C4—H4B	0.9700	C13—C14	1.369 (4)
N5—C8	1.455 (4)	С13—Н13	0.9300
N5—C6	1.460 (3)	C14—H14	0.9300
N9 ⁱ —Cd1—N9	83.36 (10)	C4—N5—C6	109.7 (2)
N9 ⁱ —Cd1—S1 ⁱ	94.66 (5)	N5—C6—C7	111.9 (2)
N9—Cd1—S1 ⁱ	91.69 (5)	N5—C6—H6A	109.2
N9 ⁱ —Cd1—S1	91.69 (5)	С7—С6—Н6А	109.2

N9—Cd1—S1	94.66 (5)	N5—C6—H6B	109.2
S1 ⁱ —Cd1—S1	171.50 (3)	С7—С6—Н6В	109.2
N9 ⁱ —Cd1—S2	158.69 (5)	Н6А—С6—Н6В	107.9
N9—Cd1—S2	93.18 (5)	N2—C7—C6	109.2 (2)
$S1^{i}$ —Cd1—S2	106.48 (2)	N2—C7—H7A	109.8
S1—Cd1—S2	67.56 (2)	С6—С7—Н7А	109.8
$N9^{i}$ —Cd1—S2 ⁱ	93.18 (5)	N2—C7—H7B	109.8
N9—Cd1— $S2^{i}$	158.69 (5)	С6—С7—Н7В	109.8
$S1^{i}$ Cd1 $S2^{i}$	67 56 (2)	H7A—C7—H7B	108 3
$S1 - Cd1 - S2^{i}$	106 48 (2)	N5-C8-H8A	109.5
S1 = Cd1 = S2	97 27 (4)	N5-C8-H8B	109.5
S2—Cu1—S2	86 15 (8)		109.5
C1 = S2 = Cd1	85 73 (9)	N5-C8-H8C	109.5
N2-C1-S2	120 42 (19)	H8A—C8—H8C	109.5
N2-C1-S1	120.25 (18)	H8B-C8-H8C	109.5
S2-C1-S1	119.31 (15)	C14—N9—C10	117.0 (2)
C1—N2—C3	123.9 (2)	C14—N9—Cd1	120.15 (18)
C1—N2—C7	123.6 (2)	C10—N9—Cd1	122.80 (19)
C3—N2—C7	110.5 (2)	N9—C10—C11	122.7 (3)
N2—C3—C4	109.1 (2)	N9—C10—H10	118.6
N2—C3—H3A	109.9	C11—C10—H10	118.6
С4—С3—НЗА	109.9	C12—C11—C10	119.5 (3)
N2—C3—H3B	109.9	C12—C11—H11	120.2
С4—С3—Н3В	109.9	C10—C11—H11	120.2
НЗА—СЗ—НЗВ	108.3	C11—C12—C13	118.5 (3)
N5—C4—C3	111.5 (2)	C11—C12—H12	120.7
N5—C4—H4A	109.3	C13—C12—H12	120.7
C3—C4—H4A	109.3	C12—C13—C14	118.5 (3)
N5—C4—H4B	109.3	C12—C13—H13	120.8
C3—C4—H4B	109.3	C14—C13—H13	120.8
H4A—C4—H4B	108.0	N9—C14—C13	123.7 (3)
C8—N5—C4	111.4 (2)	N9—C14—H14	118.2
C8—N5—C6	110.4 (2)	C13—C14—H14	118.2
N9 ⁱ —Cd1—S1—C1	178.45 (10)	C8—N5—C6—C7	-179.3 (2)
N9—Cd1—S1—C1	-98.07 (10)	C4—N5—C6—C7	-56.2 (3)
S1 ⁱ —Cd1—S1—C1	40.12 (8)	C1—N2—C7—C6	105.6 (3)
S2—Cd1—S1—C1	-6.55 (8)	C3—N2—C7—C6	-59.0 (3)
S2 ⁱ —Cd1—S1—C1	84.63 (9)	N5-C6-C7-N2	57.5 (3)
N9 ⁱ —Cd1—S2—C1	20.45 (18)	N9 ⁱ —Cd1—N9—C14	-49.4 (2)
N9—Cd1—S2—C1	100.31 (10)	S1 ⁱ —Cd1—N9—C14	45.1 (2)
S1 ⁱ —Cd1—S2—C1	-166.98 (8)	S1—Cd1—N9—C14	-140.6 (2)
S1—Cd1—S2—C1	6.58 (8)	S2-Cd1-N9-C14	151.7 (2)
S2 ⁱ —Cd1—S2—C1	-98.30 (9)	S2 ⁱ -Cd1-N9-C14	32.3 (3)
Cd1—S2—C1—N2	170.5 (2)	N9 ⁱ —Cd1—N9—C10	133.4 (2)
Cd1—S2—C1—S1	-10.81 (13)	S1 ⁱ —Cd1—N9—C10	-132.1 (2)

supplementary materials

Cd1—S1—C1—N2	-170.4 (2)	S1—Cd1—N9—C10	42.2 (2)
Cd1—S1—C1—S2	10.87 (14)	S2-Cd1-N9-C10	-25.5 (2)
S2—C1—N2—C3	-9.9 (3)	S2 ⁱ —Cd1—N9—C10	-144.91 (17)
S1—C1—N2—C3	171.4 (2)	C14—N9—C10—C11	-1.4 (4)
S2-C1-N2-C7	-172.5 (2)	Cd1—N9—C10—C11	175.9 (2)
S1—C1—N2—C7	8.8 (3)	N9-C10-C11-C12	1.2 (5)
C1—N2—C3—C4	-105.1 (3)	C10-C11-C12-C13	0.2 (5)
C7—N2—C3—C4	59.5 (3)	C11-C12-C13-C14	-1.3 (5)
N2-C3-C4-N5	-58.5 (3)	C10-N9-C14-C13	0.3 (4)
C3—C4—N5—C8	179.0 (2)	Cd1-N9-C14-C13	-177.1 (2)
C3—C4—N5—C6	56.5 (3)	C12-C13-C14-N9	1.1 (5)
Symmetry codes: (i) $-x$, y , $-z+1/2$.			

